]’a.,]a.{/— "
C@o-’é& -ﬂr

A Dual Database System with Real-Time
Replication For the Higher Education Industry

Anthony LaMarr Watkins, Cornell University
May 11, 2001

MNece Prf’fo-f"'{ /T &8ad e g Vrent vy (merncing
TRORE T T R Y B S P S
& few deawma b peclpramee ﬁﬂurfﬂ

Wt peveato his b lse.r:) o el eecephaul pape
Co Wk Yoo Aen'§ ru&\« b e revk lee! T'un unclea-
PHON S { 'bwv\m\/w'}a ¢ Runincha b, We ¢ [raunis ns
Th usnth obuing tew yeo Wenk Qoaf) will veal-ho
kwr:u il w:? et g pOASC llwu’rv;J like prey
e s it i A iy J“”U‘“&*" g A
Ty 1@“{- wh&v\ﬂ\o) how o doel «9%131« Mﬁub
Jadnlbasr ekt e gty r’”‘w'@.

hll, of T woo i i besiren, T wold bty
Gl ok TRt

M uut\ A NFM"J &Z/‘[M[ﬁ :
2o : have & heahevalee prop2s: b

%0\) K iow ub,avr\ \\OP‘C A\

1 Introduction

More than a decade after the advent of client/server architectures, the higher
education market has yet to see commensurate advances in functionality. To the
contrary, many of their attempts at client/server systems have failed, in whole
or in part. Some well-regarded consultants claim that the new client/server
applications are as costly as the legacy-based systems.

Ag they reflect critically on the question of “why”, one possibility is that the fun-
damental design remains monolithic. The platform has changed and the terms
are different, but the underlying structure is an all-encompassing, potentially
scope-creep information system optimized for transaction processing, with in-
cremental (cost ineffective) enhancements to support executive information and
decision-support.

What is needed is a dual-database strategy, with one system exclusively designed
for data entry/updating and another system optimized solely for information
retrieval. In order for this type of system to gain acceptance, it must provide
real-time guarantees. The key to this will be efficient replication from the data-
entry system to the information retrieval system. This replication will be the
focus of my project. More specifically, I would like to set up the skeletal frame-
work for the back-end Student Data System (SDS) to the front-end Student
Information System (SIS) and write an administrative application that allows
for the replication to occur. This application will also allow the replication to
be automated on timed intervals. The final product of this project will be a
backend system that allows for data-entry, a front-end system that is optimized
for information retrieval, and a module that allows and automates replication
from the data system to the information system.

2 Background

The higher education industry has recently exhibited a trend towards updating
their legacy systems. Many universities turned to PeopleSoft to implement these
gystems. Joseph Nolan, the vice president for human resources development and
labor relations at Cleveland State University, said “At the time Cleveland State
selected PeopleSoft, the university had no other choice because it wanted to work
with modern business applications that could share human-resources, financial,
and student information. Only PeopleSoft was selling such a combination.” [6]
These modern applications shifted technology from the traditional mainframe
system to the newer client/server architecture. Despite the shift to a more
modern system and 2.6 million dollars in hardware, these applications were
experiencing serious difficulties. Provosts and vice presidents of seven of eight
universities in the Big Ten Conference that use PeopleSoft programs sent a
joint letter to PeopleSoft stating, “the performance of the systems, in terms of
responsiveness, is simply unacceptable.” [5] The letter focused on the amount of

time it took to complete batch tasks, such as tuition calculations. These tasks
took as much as six days for some institutions.

2.1 Fitting the Solution to the Problem

“Too often we push the problem into the background because we are in a hurry
to proceed to a solution...[T]his tendency to focus on the solution has been
harmful both to individual development projects and to the evolution of meth-
ods. Many projects have failed because their requirements were inadequately
explored and described.” 8] This quote from Michael Jackson outlines one of the
most significant problems the higher education market faces. Many companies
are building complex monolithic systems that are not tailored to the needs of to-
day’s colleges and universities. Paul N. Courant, associate provost at Michigan
said, “I do not think there was good mutual understanding between the uni-
versities and PeopleSoft about what was going to be required for the software
to work smoothly. To a certain extent, it’s frustrating to educate them.”[5] He
further notes that universities are different from large commercial enterprises.
“They are far less centralized and may have far-flung campuses whose research
and graduate programs are distinct from undergraduate schools.” It is clear
that a fully integrated/monolithic system may not be the best solution for the
problems that these highly decentralized universities encounter.

2.2 Retrieval vs. Updating

A classic topic in systems is proper design of the database schema. There are
two key factors that impact the design and performance of a database. These
are the normal form and field indices.! An optimized transactional system is
normalized with few indices, while an optimized querying system is denormalized
with many indices.

Updating information is best served with a normalized design. Among other
things, a normalized design contains no repeating groups of data. Repeating
groups occur in a table when the same information is included in each new row.
This redundancy of data waste space and complicates the task of updating.
Instead of updating data in one place, as is done in normalized tables, multiples
copies must be maintained in a denormalized setting.[7] This has two main
drawbacks. First and foremost, if all copies are not brought up to date, there
will be inconsistencies in the database. Secondly, updating data in multiple
places, instead of a single location, will increase the amount of time required to
change information in the database, thereby degrading overall performance. It
is clear that updating is best accomplished via a normalized design.

Information retrieval is done most efficiently with a denormalized design. A
denormalized database spreads the same information across multiple tables.

! Familiarity with these two concepts is assumed.

This reduces the number of table joins necessary during a query. This is very
significant as table joins are one of the most expensive operations that are
performed during information retrieval.

3 Related Work

This is not the first time this problem has recognized and there have been pro-
posed solutions. Ron Soukup, author of Inside Microsoft SQL Server 6.5, says
“If the most important and time-critical function your system must perform is
fast querying, it often makes sense t0 consciously back off from a normalized
design. Think of normalization as typically being good for updating but poten-
tially bad for querying. In fact, anytime I get beyond a four-way join, I look for
alternatives.” [1] While Soukup brings light to the problem, he does not provide
a general solution and suggests temporary fixes in extremely bad situations.
The work presented in this paper is focused at a system-wide solution t0 the
general problem, not just special cases.

This work proposes a dual-database strategy with real-time replication. How-
ever, this idea has been visited. Tom Hammergren, author of Data Warehousing
- Building the Corporate Knowledgebase, says

Current technology doesn’t allow for update and read activities to
effectively occur simultaneously on one database. Thus, a dual-
database strategy provides better performance, with one database
for operational update activities and one for decision-support read
activities. By creating two separate databases, each database can be
individually tuned for optimal performance. The number of indexes
on an update-intensive transaction database can be minimized, while
the number of indexes on a read-only intensive decision-support
database can be maximized. Each of these designs provides its re-
gpective constituency with maximum performance for a given envi-
ronment. (2]

While Hamlmergren’s work both realizes the problem and suggests a similar
dual-database strategy, it does not deal with issues of real-time guarantees in
the knowledgebase. It is this remaining step that will be the focus of this work.

4 Discussion
Before the remainder of this paper is presented, it i8 necessary to discuss a set

of key issues. These topics are vital to the understanding the overall goals of
this work.

v

oL

1"

4.1 Real-Time Systems

The largest, most common concern of people when discussing a dual-database
strategy is whether the system is real-time. Unfortunately, this term has devel-
oped into a buzzword (a heavily sited, yet often misunderstood concept). Many
people have the misconception that a real-time system implies that as soon as a
change is made in any part of the system, that change is immediately recognized
in all other parts of the system. However, this is not the case. E. Douglas Jensen
of www.real-time.org writes in his article, Real-Time for the Real World, “Real-
time computing i8 properly defined to have the objective of attaining results
with acceptable optimality and predictability of timeliness. Systems operate in
real-time to the degree that they achieve that objective.”[3]

For instance, most people consider the debit card system to be real-time?. It is
certainly real-time in the sense that the transaction will check the account bal-
ance, check flags for erratic spending that may indicate an unauthorized person
is using the card, and confirm/refute the purchase all in a matter of seconds.
However, the actual charge may not be deducted from the balance of the ac-
count for a period of 2-3 days. Yet, this aspect of the system is still considered
real-time. This is due to it satisfying the two constraints listed above. First, it
attains its results with acceptable optimality. In most cases, waiting 2-3 days
for the charge to be deducted will not negatively affect a person’s spending
habits. In contrast if the period for recognition of the charge was 30-60 days, it
could easily have the affect of people constantly overcharging on their accounts
as they might not remember charges they had made a month or two earlier.
This situation would not exhibit acceptable optimality. Secondly, it displays
predictability of timeliness. The overwhelming majority of debit card transac-
tions are recognized in three days or less. This range is an acceptable scope
of time for the application in question. If the range was 30-60 days this would
most likely not be considered predictable in time. However, it should be noted
that if the range were exactly 30-31 days this would satisfy the predictability
of timeliness restriction, but would most likely fail the acceptable optimality
constraint.

The key point is that real-time systems are not defined by immediate system-
wide recognition of events, rather they are defined by the degree of time it takes
an event to propagate through the system and whether that is acceptable for
the gituation at hand.

4.2 Inquiries vs. Queries

In order to ensure real-time guarantees throughout the system, it is the case that
some information be recognized immediately after it is placed in the system.
Therefore, it is necessary to employ some degree of information retrieval from

2Debit cards are used exactly like credit cards, but the charge is withdrawn directly from
the cardholder’s bank account.

the Student Data System. This information retrieval is defined by this work as
an inquiry. An inquiry differs from a query in that the information is resident
in one table and is being searched primarily on an indexed field. Its purpose is
to provide the most up-to-date information when necessary without straining
system resources in the process. It usually corresponds to retrieving information
on data that will be updated soon thereafter. On the other hand, a query can
reference many tables/fields, deals with cumulative data, and often references
historic information. A query can be quite resource intensive, especially if it is
executed on a database that is not designed for that purpose. The remainder
of this paper will focus on queries.

5 Overview

The system presented by this paper is based on a dual database strategy with
real-time replication. The Student Data System (SDS) is the backend database
that will handle transaction processing. This system will follow a normalized
design with few indices. The Student Information System (SIS) is the fron-
tend database that will handle information retrieval and decision support. The
SIS will be based upon a denormalized design with heavy indexing on fields.
The replication between the systems occurs from the SDS (source) to the SIS
(destination).

As mentioned in the previous sections, the choice of normalization and indices
has a tremendous impact on how the system responds to different tasks. A
sample application was built in order to test the speed of querying a normalized
versus denormalized table. This application is depicted below:

12:28:45 AW

Figure 1: Query Tool

Below is a table containing results from an experimental query run against a
normalized table with indices on the primary keys and a denormalized table that
is heavily indexed. The times are based on four successive queries. The first
query is student’s 1) with management science majors, 2) who have applied for
graduation, 3) that were admitted as first-time students, 4) from Maryland, and
5) who have earned more than 100 hours. The second query finds all students
from the school of Arts and Sciences. The third query finds all currently enrolled
transfer students who transferred from a college located in Maryland. Finally,
the fourth query finds all currently enrolled students who made Dean’s List their
previous semester in attendance. These queries were run ten times to obtain
results on an average run.

Average Time o
Normalized, indexed on primary key | 3 minutes 56 seconds v
Denormalized, heavily indexed .7 seconds

Table 1 - Average Time of 4 Successive Queries

It is clear that a denormalized table provides much better performance in re-
gards to information retrieval. However, as it was noted earlier, updating a
denormalized table is not an acceptable strategy. This situation leads to the
real-time replication mechanism presented in this paper.

6 Detailed Design

The real-time replication mechanism presented in this paper is implemented
between two SQL Server Databases connected by a local area network. The
actual replication mechanism is implemented with Microsoft’s Data Transfor-
mation Services (DTS). DTS allows an application to define a mapping between
a source table and a destination table. This mapping can be used in conjunction
with a query to combine elements of tables or do complex calculations of data
resident in the tables.

The source table in this system is the backend Student Data System (SDS),
while the destination table is the front end Student Information System (SIS).
In the test application, several of the normalized tables in the SDS are mapped
into one denormalized table in the SIS. A figure capturing this mapping is noted
below:

Figure 2: Mapping Tool

In this instance of the transformation, there is a mapping from the address
table in the RegeisTest database on the SDS server to the denormalized table
in the RegeisTest database on the SIS server. As seen in the example two of the
columns, WithdrawDate and Mdate, are ignored. This is due to these columns
not being resident in the address table of the source database, therefore they are
ignored in the mapping. The columns street, city, and state are all resident in
the address table and are therefore replicated to the destination table. This type
of mapping was done for all normalized tables in the SDS to the denormalized
table in the SIS.

7 Results

The transformations were run ten times to get the average speed of the repli-
cation process. The test was run each time with the same number of records
transferred. It should be noted that it is highly improbable for even the ma-
jority of records to change in between a given replication window. However, as

this research does not have that information, the transfer time per record will
be calculated. This information is contained below.

Average Time | Record Count | Records/Second
Replication Process | 4 min, 11 secs 3711 14.8
Table 2 - Replication Process Data

The process took an average time of 4 minutes and 11 seconds, slightly longer
than it took to do the one query example presented earlier (avg. time = 3 min,
56 secs). This is a good performance time, especially considering that in practice
it is highly unlikely for even a majority of the data to have changed between
a replication window®. The record count is actually not the number of records
transferred. It is the number of records resident in the denormalized table. Since
the normalized table has much fewer columns than the denormalized table, many
more records are actually transferred. The records/sec statistic given above
should be interpreted as the number of rows in the denormalized table that can
be populated per second. One of the key issues with this replication scheme
is availability. While data is being transferred, both the SDS and the SIS can
be accessed. While the SDS is not significantly affected during the process, the
SIS has very noticeable delays when attempting to query on tables that are
currently being updated. The querying will succeed, but it will take a longer
amount of time. This is also slightly database dependent. By default SQLServer
uses page-level locking, which are 2KB in size. If all or part of the information
being accessed is within this 2KB segment, the query must wait until the lock
is released.

8 Future Work

There are some key issues not explored by this research that should be accounted
for before this system is placed into production. Foremost of these are fault
tolerance mechanisms. This research did not attempt to set up mechanisms to
detect failure or report failure when it occurs. In a production system, it is
vital that errors in the replication process by trapped and reported. If this is
not done, part or all of the replication may fail and as a result the SIS will
contain stale data. In this respect, the system would not be providing the real-
time guarantees mentioned earlier. Another unexplored facet is the statistics
on how many changes are actually encountered during daily operation in a
common college setting. Collecting more data on typical changes in data to
estimate how long it would take on average for different size schools to run
these transformations would be valuable information. With that, it would be
easier to determine how many updates must be performed to the SIS during a

30f course this depends on how often the replication process is run, but this research
assumes that it will occur at least once a day.

daily basis. Having this information, it could be estimated the degree to which
the SIS would have decreased availability and if that was acceptable. However,
this estimation would require a large amount of statistical data on a variety
of school types (public, private, HBCUs, liberal arts colleges, etc.) and sizes,
which is why this topic was unexplored by this research.

9 Conclusion

This research presented a dual database strategy with a real-time replication
mechanism. It showed that one monolithic system cannot efficiently support
the behavior exhibited by today’s colleges and universities. While detailed data
was not collected, it is important to note that the proposed system in this paper
is a solution tailored to the characteristic problems facing today’s colleges.

The real-time replication mechanism was proposed, because colleges are highly
data stable. There is only a small portion of time throughout the year when
changes in information are widespread. In a semester, there is basically one week
of registering and one week after course grades come in were many changes are
being made. Information such as SATs, permanent addresses, course grades
from previous semesters (and so on) do not change with great frequency. In
addition to this, all universities have a freeze date approximately 14 days after
classes start, signifying that no changes can be made for reporting purposes®.
It does not make sense to have one monolithic system tailored to data-entry to
serve such an environment. Users should not have to wait four minutes for a
simply query to return or six days to do tuition calculations. A dual database
strategy with real-time replication may not work for all environments, but for
colleges and universities - it is a solution fit to the problem.

“Reports to outside agencies like the government for the PELL grant. Universities must
use the same information today that they do next year.

10

10

References

. Ron Soukup. Inside Microsoft SQL Server 6.5. Microsoft Press, 1999.
. Tom Hammergren. Data Warehousing - Building the Corporate Knowl-

edgebase. Sybase Press, 1999.

. E. Douglas Jensen. Real-Time for the Real World. www.real-time.org/no-

frames/rt-concepts.htm, 2001.

. Client/Server Software Architectures-An Overview http://www.sei.cmu.edu

/str/descriptions/clientserver-body.html, 2000.

. Wendy R. Leibowitz. Officials of 7 large universities complain to People-

Soft about its programs. Chronicles of Higher Education, January 7,2000.

. Florence Olsen. As PeopleSoft Problems Persist, Cleveland State U. Looks

for a New Project Manager. Chronicles of Higher Education, January
21,2000.

Silberschatz, Korth, Sudarshan. Database System Concepts. McGraw-
Hill, 1999.

Michael Jackson. Software Requirements & Specifications. Addison-
Wesley, 1995.

11

